Second-order unconditionally stable schemes of linear multi-step methods, and their equivalent single-step methods, are developed in this paper. The parameters of the linear two-, three-, and four-step methods are determined for optimal accuracy, unconditional stability and tunable algorithmic dissipation. The linear three- and four-step schemes are presented for the first time. As an alternative, corresponding single-step methods, spectrally equivalent to the multi-step ones, are developed by introducing the required intermediate variables. Their formulations are equivalent to that of the corresponding multi-step methods; their use is more convenient, owing to being self-starting. Compared with existing second-order methods, the proposed ones, especially the linear four-step method and its alternative single-step one, show higher accuracy for a given degree of algorithmic dissipation. The accuracy advantage and other properties of the newly developed schemes are demonstrated by several illustrative examples.
Improved second-order unconditionally stable schemes of linear multi-step and equivalent single-step integration methods
Zhang, Huimin;Zhang, Runsen;Masarati, Pierangelo
2021-01-01
Abstract
Second-order unconditionally stable schemes of linear multi-step methods, and their equivalent single-step methods, are developed in this paper. The parameters of the linear two-, three-, and four-step methods are determined for optimal accuracy, unconditional stability and tunable algorithmic dissipation. The linear three- and four-step schemes are presented for the first time. As an alternative, corresponding single-step methods, spectrally equivalent to the multi-step ones, are developed by introducing the required intermediate variables. Their formulations are equivalent to that of the corresponding multi-step methods; their use is more convenient, owing to being self-starting. Compared with existing second-order methods, the proposed ones, especially the linear four-step method and its alternative single-step one, show higher accuracy for a given degree of algorithmic dissipation. The accuracy advantage and other properties of the newly developed schemes are demonstrated by several illustrative examples.File | Dimensione | Formato | |
---|---|---|---|
ZHANH03-20.pdf
accesso aperto
Descrizione: Paper
:
Publisher’s version
Dimensione
4.59 MB
Formato
Adobe PDF
|
4.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.