Three inclined historical masonry towers, located in the city of Ferrara (North-East region of Italy), are analyzed under seismic loads employing advanced numerical models. This study provides a critical review on the conservation state, present vulnerabilities, influence of peculiar structural features, and future need for strengthening interventions. Three scenarios were performed, mimicking the seismic severity of earthquakes for three different return periods: 50y, 200y, and 500y. The mechanical properties adopted for the models were extracted by tuning the dynamic response of the models with ambient vibrations test results. A concrete damage plasticity material, with a simplified multilinear softening in both tension and compression, is here adopted. Three parameters are investigated for an insight into the seismic performance estimation: (i) the damage pattern, (ii) the dissipated plastic energy, and (iii) the top displacement. Nonlinear dynamics simulations show the dissemination of structural damages for relatively low magnitude of ground acceleration, where clear failure mechanisms are prone to be activated. The present case studies exhibit unsymmetrical failure mechanisms due to the geometrical features, favoring the crack propagation in in-tension sidewalls, or stability loss of compressed walls. From a preliminary estimation of their seismic vulnerability, it is deduced that a relatively high risk is still present.
Preliminary Assessment of the Seismic Vulnerability of Three Inclined Bell-towers in Ferrara, Italy
Shehu R.
2020-01-01
Abstract
Three inclined historical masonry towers, located in the city of Ferrara (North-East region of Italy), are analyzed under seismic loads employing advanced numerical models. This study provides a critical review on the conservation state, present vulnerabilities, influence of peculiar structural features, and future need for strengthening interventions. Three scenarios were performed, mimicking the seismic severity of earthquakes for three different return periods: 50y, 200y, and 500y. The mechanical properties adopted for the models were extracted by tuning the dynamic response of the models with ambient vibrations test results. A concrete damage plasticity material, with a simplified multilinear softening in both tension and compression, is here adopted. Three parameters are investigated for an insight into the seismic performance estimation: (i) the damage pattern, (ii) the dissipated plastic energy, and (iii) the top displacement. Nonlinear dynamics simulations show the dissemination of structural damages for relatively low magnitude of ground acceleration, where clear failure mechanisms are prone to be activated. The present case studies exhibit unsymmetrical failure mechanisms due to the geometrical features, favoring the crack propagation in in-tension sidewalls, or stability loss of compressed walls. From a preliminary estimation of their seismic vulnerability, it is deduced that a relatively high risk is still present.File | Dimensione | Formato | |
---|---|---|---|
Preliminary Assessment of the Seismic Vulnerability of Three Inclined Bell towers in Ferrara Italy.pdf
Accesso riservato
:
Publisher’s version
Dimensione
49.65 MB
Formato
Adobe PDF
|
49.65 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.