We analyze the fundamental solution of a time-fractional problem, establishing existence and uniqueness in an appropriate functional space. We also focus on the one-dimensional spatial setting in the case in which the time-fractional exponent is equal to, or larger than, 21 . In this situation, we prove that the speed of invasion of the fundamental solution is at least “almost of square root type”, namely it is larger than ct beta apice for any given c > 0 and beta ∈ (0, 21 ).

Time-fractional equations with reaction terms: Fundamental solutions and asymptotics

Verzini, Gianmaria
2021-01-01

Abstract

We analyze the fundamental solution of a time-fractional problem, establishing existence and uniqueness in an appropriate functional space. We also focus on the one-dimensional spatial setting in the case in which the time-fractional exponent is equal to, or larger than, 21 . In this situation, we prove that the speed of invasion of the fundamental solution is at least “almost of square root type”, namely it is larger than ct beta apice for any given c > 0 and beta ∈ (0, 21 ).
2021
File in questo prodotto:
File Dimensione Formato  
11311-1154395_Verzini.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 221.27 kB
Formato Adobe PDF
221.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1154395
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact