In so-called jeff= 1 / 2 systems, including some iridates and ruthenates, the coherent superposition of t2 g orbitals in the ground state gives rise to hopping processes that strongly depend on the bond geometry. Resonant inelastic X-ray scattering measurements on CaIrO3 reveal a prototypical jeff= 1 / 2 pseudospinon continuum, a hallmark of one-dimensional (1D) magnetic systems despite its three-dimensional crystal structure. The experimental spectra compare very well to the calculated magnetic dynamical structure factor of weakly coupled spin-1/2 chains. We attribute the onset of such quasi-1D magnetism to the fundamental difference in the magnetic interactions between the jeff= 1 / 2 pseudospins along the corner- and edge-sharing bonds in CaIrO3.
A $j_{mathrm{eff}} = 1/2$ pseudospinon continuum in CaIrO$_3$
Rossi, Matteo;Marabotti, Pietro;Wohlfeld, Krzysztof;Moretti Sala, Marco
2020-01-01
Abstract
In so-called jeff= 1 / 2 systems, including some iridates and ruthenates, the coherent superposition of t2 g orbitals in the ground state gives rise to hopping processes that strongly depend on the bond geometry. Resonant inelastic X-ray scattering measurements on CaIrO3 reveal a prototypical jeff= 1 / 2 pseudospinon continuum, a hallmark of one-dimensional (1D) magnetic systems despite its three-dimensional crystal structure. The experimental spectra compare very well to the calculated magnetic dynamical structure factor of weakly coupled spin-1/2 chains. We attribute the onset of such quasi-1D magnetism to the fundamental difference in the magnetic interactions between the jeff= 1 / 2 pseudospins along the corner- and edge-sharing bonds in CaIrO3.File | Dimensione | Formato | |
---|---|---|---|
Rossi2020_Article_AHboxJMathrmEff12Jeff12Pseudos.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.