We prove Pohozaev-type identities for smooth solutions of Euler-Lagrange equations of second and fourth order that arise from functional a depending on homogeneous Hörmander vector fields. We then exploit such integral identities to prove non-existence results for the associated boundary value problems.
Pohozaev-type identities for differential operators driven by homogeneous vector fields
Biagi S.;Vecchi E.
2021-01-01
Abstract
We prove Pohozaev-type identities for smooth solutions of Euler-Lagrange equations of second and fourth order that arise from functional a depending on homogeneous Hörmander vector fields. We then exploit such integral identities to prove non-existence results for the associated boundary value problems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Biagi2020_Article_Pohozaev-typeIdentitiesForDiff (2).pdf
Accesso riservato
:
Publisher’s version
Dimensione
447.18 kB
Formato
Adobe PDF
|
447.18 kB | Adobe PDF | Visualizza/Apri |
11311-1152350_Biagi.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
204.52 kB
Formato
Adobe PDF
|
204.52 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.