Reliable predictions of the aero-and hydrodynamic loads acting on floating offshore wind turbines are paramount for assessing fatigue life, designing load and power control systems, and ensuring the overall system stability at all operating conditions. However, significant uncertainty affecting both predictions still exists. This study presents a cross-comparative analysis of the predictions of the aerodynamic loads and power of floating wind turbine rotors using a validated frequency-domain Navier-Stokes Computational Fluid Dynamics solver, and a state-of-the-art Blade Element Momentum theory code. The considered test case is the National Renewable Energy Laboratory 5 MW turbine, assumed to be mounted on a semi-submersible platform. The rotor load and power response at different pitching regimes is assessed and compared using both the high-and low-fidelity methods. The overall qualitative agreement of the two prediction sets is found to be excellent in all cases. At a quantitative level, the high-and low-fidelity predictions of both the mean rotor thrust and the blade out-of-plane bending moments differ by about 1 percent, whereas those of the mean rotor power differ by about 6 percent. Part of these differences at high pitching amplitude appear to depend on differences in dynamic stall predictions of the approaches.

Cross-comparative analysis of loads and power of pitching floating offshore wind turbine rotors using frequency-domain Navier-Stokes CFD and blade element momentum theory

Ortolani A.;Persico G.;
2020-01-01

Abstract

Reliable predictions of the aero-and hydrodynamic loads acting on floating offshore wind turbines are paramount for assessing fatigue life, designing load and power control systems, and ensuring the overall system stability at all operating conditions. However, significant uncertainty affecting both predictions still exists. This study presents a cross-comparative analysis of the predictions of the aerodynamic loads and power of floating wind turbine rotors using a validated frequency-domain Navier-Stokes Computational Fluid Dynamics solver, and a state-of-the-art Blade Element Momentum theory code. The considered test case is the National Renewable Energy Laboratory 5 MW turbine, assumed to be mounted on a semi-submersible platform. The rotor load and power response at different pitching regimes is assessed and compared using both the high-and low-fidelity methods. The overall qualitative agreement of the two prediction sets is found to be excellent in all cases. At a quantitative level, the high-and low-fidelity predictions of both the mean rotor thrust and the blade out-of-plane bending moments differ by about 1 percent, whereas those of the mean rotor power differ by about 6 percent. Part of these differences at high pitching amplitude appear to depend on differences in dynamic stall predictions of the approaches.
2020
SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020)
File in questo prodotto:
File Dimensione Formato  
144-JPh_Torque20-FOWT.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1152177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 8
social impact