Magneto-rheological dampers are employed in the automotive industry to control the vehicle dynamics by modulating the damping characteristics of the suspension system; these devices rely on a smart fluid which can change its viscosity when subjected to a magnetic field. The viscosity of this magneto-rheological fluid is significantly dependent on the operating temperature; this phenomenon is particularly critical in the automotive field since the working conditions span a wide range of temperatures and, furthermore, a commercial vehicle cannot be equipped to directly measure the temperature of the fluid. This article proposes a methodology for the temperature estimation which exploits the thermodynamic relationship between the resistance of the electrical circuit of the device and the temperature of the magneto-rheological fluid.
Temperature estimation in a magneto-rheological damper
Savaia G.;Corno M.;Panzani G.;Savaresi S. M.
2020-01-01
Abstract
Magneto-rheological dampers are employed in the automotive industry to control the vehicle dynamics by modulating the damping characteristics of the suspension system; these devices rely on a smart fluid which can change its viscosity when subjected to a magnetic field. The viscosity of this magneto-rheological fluid is significantly dependent on the operating temperature; this phenomenon is particularly critical in the automotive field since the working conditions span a wide range of temperatures and, furthermore, a commercial vehicle cannot be equipped to directly measure the temperature of the fluid. This article proposes a methodology for the temperature estimation which exploits the thermodynamic relationship between the resistance of the electrical circuit of the device and the temperature of the magneto-rheological fluid.File | Dimensione | Formato | |
---|---|---|---|
main.pdf
accesso aperto
Descrizione: Accepted version
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.01 MB
Formato
Adobe PDF
|
1.01 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.