The performance of service units may depend on various randomly changing environmental effects. It is quite often the case that these effects vary on different timescales. In this paper, we consider small and large scale (short and long term) service variability, where the short term variability affects the instantaneous service speed of the service unit and a modulating background Markov chain characterizes the long term effect. The main modelling challenge in this work is that the considered small and long term variation results in randomness along different axes: short term variability along the time axis and long term variability along the work axis. We present a simulation approach and an explicit analytic formula for the service time distribution in the double transform domain that allows for the efficient computation of service time moments. Finally, we compare the simulation results with analytic ones.

Modelling large timescale and small timescale service variability

Gribaudo M.;
2020-01-01

Abstract

The performance of service units may depend on various randomly changing environmental effects. It is quite often the case that these effects vary on different timescales. In this paper, we consider small and large scale (short and long term) service variability, where the short term variability affects the instantaneous service speed of the service unit and a modulating background Markov chain characterizes the long term effect. The main modelling challenge in this work is that the considered small and long term variation results in randomness along different axes: short term variability along the time axis and long term variability along the work axis. We present a simulation approach and an explicit analytic formula for the service time distribution in the double transform domain that allows for the efficient computation of service time moments. Finally, we compare the simulation results with analytic ones.
2020
Brownian motion
Markov modulation
Performance analysis
Short and long term service variability
File in questo prodotto:
File Dimensione Formato  
11311-1151510_Gribaudo.pdf

accesso aperto

: Publisher’s version
Dimensione 476.04 kB
Formato Adobe PDF
476.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1151510
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact