In this work we present a model reduction procedure to derive a hybrid-dimensional framework for the mathematical modeling of reactive transport in fractured porous media. Fractures are essential pathways in the underground which allow fast circulation of the fluids present in the rock matrix, often characterized by low permeability. However, due to infilling processes fractures may change their hydraulic properties and become barriers for the flow and creating impervious blocks in the underground. The geometrical as well as the physical properties of the fractures require a special treatment to allow the subsequent numerical discretization to be affordable and accurate. The aim of this work is to introduce a simple yet complete mathematical model to account for such diagenetic effects where chemical reactions will occlude or empty portions of the porous media and, in particular, fractures.
Reactive Flow in Fractured Porous Media
A. Fumagalli;A. Scotti
2020-01-01
Abstract
In this work we present a model reduction procedure to derive a hybrid-dimensional framework for the mathematical modeling of reactive transport in fractured porous media. Fractures are essential pathways in the underground which allow fast circulation of the fluids present in the rock matrix, often characterized by low permeability. However, due to infilling processes fractures may change their hydraulic properties and become barriers for the flow and creating impervious blocks in the underground. The geometrical as well as the physical properties of the fractures require a special treatment to allow the subsequent numerical discretization to be affordable and accurate. The aim of this work is to introduce a simple yet complete mathematical model to account for such diagenetic effects where chemical reactions will occlude or empty portions of the porous media and, in particular, fractures.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.