In the last decades much research effort has been devoted to extending the success of model checking from the traditional field of finite state machines and various versions of temporal logics to suitable subclasses of context-free languages and appropriate extensions of temporal logics. To the best of our knowledge such attempts only covered structured languages, i.e. languages whose structure is immediately “visible” in their sentences, such as tree-languages or visibly pushdown ones. In this paper we present a new temporal logic suitable to express and automatically verify properties of operator precedence languages. This “historical” language family has been recently proved to enjoy fundamental algebraic and logic properties that make it suitable for model checking applications yet breaking the barrier of visible-structure languages (in fact the original motivation of its inventor Floyd was just to support efficient parsing, i.e. building the “hidden syntax tree” of language sentences). We prove that our logic is at least as expressive as analogous logics defined for visible pushdown languages yet covering a much more powerful family; we design a procedure that, given a formula in our logic builds an automaton recognizing the sentences satisfying the formula, whose size is at most exponential in the length of the formula. Our results cover both finite and infinite string languages.

Operator precedence temporal logic and model checking

Chiari M.;Mandrioli D.;Pradella M.
2020-01-01

Abstract

In the last decades much research effort has been devoted to extending the success of model checking from the traditional field of finite state machines and various versions of temporal logics to suitable subclasses of context-free languages and appropriate extensions of temporal logics. To the best of our knowledge such attempts only covered structured languages, i.e. languages whose structure is immediately “visible” in their sentences, such as tree-languages or visibly pushdown ones. In this paper we present a new temporal logic suitable to express and automatically verify properties of operator precedence languages. This “historical” language family has been recently proved to enjoy fundamental algebraic and logic properties that make it suitable for model checking applications yet breaking the barrier of visible-structure languages (in fact the original motivation of its inventor Floyd was just to support efficient parsing, i.e. building the “hidden syntax tree” of language sentences). We prove that our logic is at least as expressive as analogous logics defined for visible pushdown languages yet covering a much more powerful family; we design a procedure that, given a formula in our logic builds an automaton recognizing the sentences satisfying the formula, whose size is at most exponential in the length of the formula. Our results cover both finite and infinite string languages.
2020
Input driven languages
Model checking
Operator precedence languages
Temporal logic
Visibly pushdown languages
ω-Languages
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Descrizione: Articolo principale
: Pre-Print (o Pre-Refereeing)
Dimensione 448.18 kB
Formato Adobe PDF
448.18 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1150413
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact