Accurately assessing green and blue water requirements from croplands is fundamental to promote sustainable water management. In the last decade, global hydrological models have provided important insights into global patterns of water requirements for crop production. As important as these models are, they do not provide monthly crop-specific and year-specific data of green and blue water requirements. Gridded crop-specific products are therefore needed to better understand the spatial and temporal evolution of water demand. Here, we present a global gridded database of monthly crop-specific green (rain-fed) and blue (irrigated) water requirements for 23 main crops and 3 crop groups obtained using our WATNEEDS model. For the time periods in which our dataset matched, these estimates are validated against existing global products and satellite based datasets of evapotranspiration. The data are publicly available and can be used by practitioners in the water-energy-food nexus to assess the water sustainability of our food and energy systems at multiple spatial (local to global) and temporal (seasonal to multi-year) scales.
The green and blue crop water requirement WATNEEDS model and its global gridded outputs
Chiarelli, Davide Danilo;Rulli, Maria Cristina
2020-01-01
Abstract
Accurately assessing green and blue water requirements from croplands is fundamental to promote sustainable water management. In the last decade, global hydrological models have provided important insights into global patterns of water requirements for crop production. As important as these models are, they do not provide monthly crop-specific and year-specific data of green and blue water requirements. Gridded crop-specific products are therefore needed to better understand the spatial and temporal evolution of water demand. Here, we present a global gridded database of monthly crop-specific green (rain-fed) and blue (irrigated) water requirements for 23 main crops and 3 crop groups obtained using our WATNEEDS model. For the time periods in which our dataset matched, these estimates are validated against existing global products and satellite based datasets of evapotranspiration. The data are publicly available and can be used by practitioners in the water-energy-food nexus to assess the water sustainability of our food and energy systems at multiple spatial (local to global) and temporal (seasonal to multi-year) scales.File | Dimensione | Formato | |
---|---|---|---|
2020_NatureScientificData_WATNEEDS.pdf
accesso aperto
Descrizione: Chiarelli et al_SciData2020
:
Publisher’s version
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.