We consider the Navier–Stokes equations in vorticity form in R2 with a white noise forcing term of multiplicative type, whose spatial covariance is not regular enough to apply the Itô calculus in Lq spaces, 1 < q< ∞. We prove the existence of a unique strong (in the probability sense) solution.

Stochastic vorticity equation in R2 with not regular noise

Zanella M.
2018-01-01

Abstract

We consider the Navier–Stokes equations in vorticity form in R2 with a white noise forcing term of multiplicative type, whose spatial covariance is not regular enough to apply the Itô calculus in Lq spaces, 1 < q< ∞. We prove the existence of a unique strong (in the probability sense) solution.
Stochastic vorticity equation
Strong solution
γ-Radonifying operators
File in questo prodotto:
File Dimensione Formato  
Ferrario_Zanella_NODEA_ArXiv.pdf

accesso aperto

: Pre-Print (o Pre-Refereeing)
Dimensione 356.22 kB
Formato Adobe PDF
356.22 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1150010
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact