We consider the Navier–Stokes equations in vorticity form in R2 with a white noise forcing term of multiplicative type, whose spatial covariance is not regular enough to apply the Itô calculus in Lq spaces, 1 < q< ∞. We prove the existence of a unique strong (in the probability sense) solution.
Stochastic vorticity equation in R2 with not regular noise
Zanella M.
2018-01-01
Abstract
We consider the Navier–Stokes equations in vorticity form in R2 with a white noise forcing term of multiplicative type, whose spatial covariance is not regular enough to apply the Itô calculus in Lq spaces, 1 < q< ∞. We prove the existence of a unique strong (in the probability sense) solution.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ferrario_Zanella_NODEA_ArXiv.pdf
accesso aperto
:
Pre-Print (o Pre-Refereeing)
Dimensione
356.22 kB
Formato
Adobe PDF
|
356.22 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.