Gold nanoparticles (GNPs)-based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs-based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs' properties and the physical mechanisms underlying the laser-induced heat generation in GNPs-loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state-of-the-art and the future perspective in the field of GNPs-mediated PTT. This article is protected by copyright. All rights reserved.

Laser-Induced Optothermal Response of Gold Nanoparticles: from a Physical Viewpoint to Cancer Treatment Application

Asadi, Somayeh;Bianchi, Leonardo;De Landro, Martina;Korganbayev, Sanzhar;Saccomandi, Paola
2021-01-01

Abstract

Gold nanoparticles (GNPs)-based photothermal therapy (PTT) is a promising minimally invasive thermal therapy for the treatment of focal malignancies. Although GNPs-based PTT has been known for over two decades and GNPs possess unique properties as therapeutic agents, the delivery of a safe and effective therapy is still an open question. This review aims at providing relevant and recent information on the usage of GNPs in combination with the laser to treat cancers, pointing out the practical aspects that bear on the therapy outcome. Emphasis is given to the assessment of the GNPs' properties and the physical mechanisms underlying the laser-induced heat generation in GNPs-loaded tissues. The main techniques available for temperature measurement and the current theoretical simulation approaches predicting the therapeutic outcome are reviewed. Topical challenges in delivering safe thermal dosage are also presented with the aim to discuss the state-of-the-art and the future perspective in the field of GNPs-mediated PTT. This article is protected by copyright. All rights reserved.
2021
gold nanoparticles, laser, near-infrared, photothermal therapy, simulation
File in questo prodotto:
File Dimensione Formato  
jbio.202000161 (1).pdf

accesso aperto

: Publisher’s version
Dimensione 5.08 MB
Formato Adobe PDF
5.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1149952
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 32
social impact