This work investigates the statistical radiated susceptibility of an electrically-short transmission line (TL) consisting of a single wire over a ground plane. The angular parameters of the impinging plane wave and the height of the wire over the ground plane are modelled as random variables with Gaussian/Uniform distributions. The statistical properties of the current in the TL terminations (i.e., mean value, standard deviation, and cumulative distribution function) are derived through a properly defined numerical methodology consisting in a modified version of the conventional Stochastic Reduced-Order Model (SROM) approach. The proposed methodology consists in a straightforward approximation of the input continuous random variables with small-size discrete random variables. In contrast with conventional SROM, no numerical pre-processing is needed. The modified SROM proposed in this paper demonstrates high efficiency when compared with classical Monte Carlo approach. The proposed technique can be applied to the statistical analysis of much more complex systems whose input/output relationship requires a huge computational burden and for which the conventional Monte Carlo approach is not suitable.

Radiated susceptibility analysis of single-wire transmission lines by means of modified stochastic reduced-order modeling

Bellan D.
2020-01-01

Abstract

This work investigates the statistical radiated susceptibility of an electrically-short transmission line (TL) consisting of a single wire over a ground plane. The angular parameters of the impinging plane wave and the height of the wire over the ground plane are modelled as random variables with Gaussian/Uniform distributions. The statistical properties of the current in the TL terminations (i.e., mean value, standard deviation, and cumulative distribution function) are derived through a properly defined numerical methodology consisting in a modified version of the conventional Stochastic Reduced-Order Model (SROM) approach. The proposed methodology consists in a straightforward approximation of the input continuous random variables with small-size discrete random variables. In contrast with conventional SROM, no numerical pre-processing is needed. The modified SROM proposed in this paper demonstrates high efficiency when compared with classical Monte Carlo approach. The proposed technique can be applied to the statistical analysis of much more complex systems whose input/output relationship requires a huge computational burden and for which the conventional Monte Carlo approach is not suitable.
2020
Radiated susceptibility
Statistical analysis
Stochastic modeling
Transmission lines
File in questo prodotto:
File Dimensione Formato  
b302005-bnk.pdf

accesso aperto

: Publisher’s version
Dimensione 1.2 MB
Formato Adobe PDF
1.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1149824
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact