Models that involve coupled dynamics in a mixed-dimensional geometry are of increasing interest in several applications. Here, we describe the development of a simulation model for flow in fractured porous media, where the fractures and their intersections form a hierarchy of interacting subdomains. We discuss the implementation of a simulation framework, with an emphasis on reuse of existing discretization tools for mono-dimensional problems. The key ingredients are the representation of the mixed-dimensional geometry as a graph, which allows for convenient discretization and data storage, and a non-intrusive coupling of dimensions via boundary conditions and source terms. This approach is applicable for a wide class of mixed-dimensional problems. We show simulation results for a flow problem in a three-dimensional fracture geometry, applying both finite volume and virtual finite element discretizations.

Implementation of mixed-dimensional models for flow in fractured porous media

Fumagalli A.;
2019-01-01

Abstract

Models that involve coupled dynamics in a mixed-dimensional geometry are of increasing interest in several applications. Here, we describe the development of a simulation model for flow in fractured porous media, where the fractures and their intersections form a hierarchy of interacting subdomains. We discuss the implementation of a simulation framework, with an emphasis on reuse of existing discretization tools for mono-dimensional problems. The key ingredients are the representation of the mixed-dimensional geometry as a graph, which allows for convenient discretization and data storage, and a non-intrusive coupling of dimensions via boundary conditions and source terms. This approach is applicable for a wide class of mixed-dimensional problems. We show simulation results for a flow problem in a three-dimensional fracture geometry, applying both finite volume and virtual finite element discretizations.
2019
Lecture Notes in Computational Science and Engineering
978-3-319-96414-0
978-3-319-96415-7
File in questo prodotto:
File Dimensione Formato  
5.pdf

Accesso riservato

: Publisher’s version
Dimensione 355.85 kB
Formato Adobe PDF
355.85 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1149543
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact