Phononic crystals/metamaterials are attracting increasing interest because of their large variety of applications at both the macro and micro scales. In this work, a new metamaterial plate (metaplate) composed of innovative phononic crystal unit-cells is presented, numerically studied, fabricated at the microscale and experimentally tested. Numerical simulations and experimental tests demonstrate a complete 3D phononic bandgap that guarantees a complete vibration isolation in a certain range of frequency. Moreover, its compatibility with Micro Electro Mechanical Systems (MEMS) fabrication processes suggests applications for vibration isolation of MEMS resonant devices. The measured transmission diagram shows a -30 dB attenuation level, which is in good agreement with numerical predictions. The proposed design opens up new perspectives for the development of vibration isolation applications for MEMS resonators.

Design, Fabrication and Experimental Validation of a Metaplate for Vibration Isolation in MEMS

Zega V.;Corigliano A.
2020

Abstract

Phononic crystals/metamaterials are attracting increasing interest because of their large variety of applications at both the macro and micro scales. In this work, a new metamaterial plate (metaplate) composed of innovative phononic crystal unit-cells is presented, numerically studied, fabricated at the microscale and experimentally tested. Numerical simulations and experimental tests demonstrate a complete 3D phononic bandgap that guarantees a complete vibration isolation in a certain range of frequency. Moreover, its compatibility with Micro Electro Mechanical Systems (MEMS) fabrication processes suggests applications for vibration isolation of MEMS resonant devices. The measured transmission diagram shows a -30 dB attenuation level, which is in good agreement with numerical predictions. The proposed design opens up new perspectives for the development of vibration isolation applications for MEMS resonators.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1149338
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 6
social impact