This paper presents a new hardware-in-the-loop methodology for wave-basin scale-model experiments about floating offshore wind turbines and its application as a tool for the validation of control strategies. In the hardware-in-the-loop experiments, the physical Froude-scaled wind turbine model used in conventional scale-model tests is replaced by a numerical model, measurements and a multi-fan actuator. As usual, properly-scaled waves are generated in the wave basin and the floating platform is simulated by means of a scale-model. The hardware-in-the-loop methodology was used to recreate the interaction between the collective pitch controller and the platform pitch mode that, often observed in numerical studies. In addition, the blade-root load measurement available in the numerical model of the rotor was used to implement an individual pitch control strategy. Different from in conventional experiments, the hardware-in-the-loop methodology allows to recreate a realistic three-dimensional wind field that was used to demonstrate the effectiveness of the individual pitch control. The improved emulation of the rotor loads and wind field make the hardware-in-the-loop experimental methodology an effective tool for the development and validation of control strategies for floating offshore wind turbines.
A hardware-in-the-loop wave-basin scale-model experiment for the validation of control strategies for floating offshore wind turbines
Fontanella A.;Belloli M.
2020-01-01
Abstract
This paper presents a new hardware-in-the-loop methodology for wave-basin scale-model experiments about floating offshore wind turbines and its application as a tool for the validation of control strategies. In the hardware-in-the-loop experiments, the physical Froude-scaled wind turbine model used in conventional scale-model tests is replaced by a numerical model, measurements and a multi-fan actuator. As usual, properly-scaled waves are generated in the wave basin and the floating platform is simulated by means of a scale-model. The hardware-in-the-loop methodology was used to recreate the interaction between the collective pitch controller and the platform pitch mode that, often observed in numerical studies. In addition, the blade-root load measurement available in the numerical model of the rotor was used to implement an individual pitch control strategy. Different from in conventional experiments, the hardware-in-the-loop methodology allows to recreate a realistic three-dimensional wind field that was used to demonstrate the effectiveness of the individual pitch control. The improved emulation of the rotor loads and wind field make the hardware-in-the-loop experimental methodology an effective tool for the development and validation of control strategies for floating offshore wind turbines.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.