We present a novel pressure-based method for weakly compressible multiphase flows, based on a non-equilibrium Baer and Nunziato-type model. Each component is described by its own thermodynamic model, thus the definition of a mixture speed of sound is not required. In this work, we describe the hyperbolic operator, without considering relaxation terms. The acoustic part of the governing equations is treated implicitly to avoid the severe restriction on the time step imposed by the CFL condition at low-Mach. Particular care is taken to discretize the non-conservative terms to avoid spurious oscillations across multi-material interfaces. The absence of oscillations and the agreement with analytical or published solutions is demonstrated in simplified test cases, which confirm the validity of the proposed approach as a building block on which developing more accurate and comprehensive methods.
Non-equilibrium model for weakly compressible multi-component flows: the hyperbolic operator
Re B.;
2020-01-01
Abstract
We present a novel pressure-based method for weakly compressible multiphase flows, based on a non-equilibrium Baer and Nunziato-type model. Each component is described by its own thermodynamic model, thus the definition of a mixture speed of sound is not required. In this work, we describe the hyperbolic operator, without considering relaxation terms. The acoustic part of the governing equations is treated implicitly to avoid the severe restriction on the time step imposed by the CFL condition at low-Mach. Particular care is taken to discretize the non-conservative terms to avoid spurious oscillations across multi-material interfaces. The absence of oscillations and the agreement with analytical or published solutions is demonstrated in simplified test cases, which confirm the validity of the proposed approach as a building block on which developing more accurate and comprehensive methods.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.