Widespread deployments of Network Function Virtualization (NFV) technology will replace many physical appliances in telecommunication networks with software executed on cloud platforms. Setting compute servers continuously to high-performance operating modes is a common NFV approach for achieving predictable operations. However, this has the effect that large amounts of energy are consumed even when little traffic needs to be forwarded. The Dynamic Voltage-Frequency Scaling (DVFS) technology available in Intel processors is a known option for adapting the power consumption to the workload, but it is not optimized for network traffic processing workloads. We developed a novel control method for DVFS, based observing the ongoing traffic and online predictions using machine learning. Our results show that we can save up to 27% compared to commodity DVFS, even when including the computational overhead of machine learning.
Improving Energy Efficiency in NFV Clouds with Machine Learning
Moreira Zorello L. M.;
2018-01-01
Abstract
Widespread deployments of Network Function Virtualization (NFV) technology will replace many physical appliances in telecommunication networks with software executed on cloud platforms. Setting compute servers continuously to high-performance operating modes is a common NFV approach for achieving predictable operations. However, this has the effect that large amounts of energy are consumed even when little traffic needs to be forwarded. The Dynamic Voltage-Frequency Scaling (DVFS) technology available in Intel processors is a known option for adapting the power consumption to the workload, but it is not optimized for network traffic processing workloads. We developed a novel control method for DVFS, based observing the ongoing traffic and online predictions using machine learning. Our results show that we can save up to 27% compared to commodity DVFS, even when including the computational overhead of machine learning.File | Dimensione | Formato | |
---|---|---|---|
bare_conf.pdf
Accesso riservato
Descrizione: Articolo principale
:
Pre-Print (o Pre-Refereeing)
Dimensione
5.42 MB
Formato
Adobe PDF
|
5.42 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.