The interest in deep learning methods for solving traditional signal processing tasks has been steadily growing in the last years. Time delay estimation (TDE) in adverse scenarios is a challenging problem, where classical approaches based on generalized cross-correlations (GCCs) have been widely used for decades. Recently, the frequency-sliding GCC (FS-GCC) was proposed as a novel technique for TDE based on a sub-band analysis of the cross-power spectrum phase, providing a structured two-dimensional representation of the time delay information contained across different frequency bands. Inspired by deep-learning-based image denoising solutions, we propose in this paper the use of convolutional neural networks (CNNs) to learn the time-delay patterns contained in FS-GCCs extracted in adverse acoustic conditions. Our experiments confirm that the proposed approach provides excellent TDE performance while being able to generalize to different room and sensor setups.

Time Difference of Arrival Estimation from Frequency-Sliding Generalized Cross-Correlations Using Convolutional Neural Networks

Comanducci L.;Antonacci F.;Sarti A.
2020-01-01

Abstract

The interest in deep learning methods for solving traditional signal processing tasks has been steadily growing in the last years. Time delay estimation (TDE) in adverse scenarios is a challenging problem, where classical approaches based on generalized cross-correlations (GCCs) have been widely used for decades. Recently, the frequency-sliding GCC (FS-GCC) was proposed as a novel technique for TDE based on a sub-band analysis of the cross-power spectrum phase, providing a structured two-dimensional representation of the time delay information contained across different frequency bands. Inspired by deep-learning-based image denoising solutions, we propose in this paper the use of convolutional neural networks (CNNs) to learn the time-delay patterns contained in FS-GCCs extracted in adverse acoustic conditions. Our experiments confirm that the proposed approach provides excellent TDE performance while being able to generalize to different room and sensor setups.
2020
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
978-1-5090-6631-5
Convolutional Neural Networks
Distributed microphones
GCC
Localization
Time delay estimation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1146072
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 17
social impact