Bioactive glasses (BG) possess significant bone-bonding and osteogenic properties that support their use for bone defects repair in orthopaedic and dental procedures. Recent advancement enables the manufacturing of BG-based scaffolds providing structural support during bone regeneration. Despite the wide number of studies on BG and BG-based materials, little information on their aging mechanisms and shelf life is available in the literature. In this study, the evolution of chemical species on BG-based foams was investigated via accelerated tests in the presence of CO2 and humidity. The aging process led to the formation of carbonates (Na2CO3 and CaCO3) and hydrocarbonates (NaHCO3). The amount and composition of nucleated species evolved with time, affecting the structure, properties, and bioactivity of the scaffolds. This study provides a first structured report of aging effects on the structure and chemico-physical properties of bioactive glass-based scaffolds, offering an insight about the importance of their storage and packaging.
Aging of bioactive glass-based foams: Effects on structure, properties, and bioactivity
De Nardo L.
2019-01-01
Abstract
Bioactive glasses (BG) possess significant bone-bonding and osteogenic properties that support their use for bone defects repair in orthopaedic and dental procedures. Recent advancement enables the manufacturing of BG-based scaffolds providing structural support during bone regeneration. Despite the wide number of studies on BG and BG-based materials, little information on their aging mechanisms and shelf life is available in the literature. In this study, the evolution of chemical species on BG-based foams was investigated via accelerated tests in the presence of CO2 and humidity. The aging process led to the formation of carbonates (Na2CO3 and CaCO3) and hydrocarbonates (NaHCO3). The amount and composition of nucleated species evolved with time, affecting the structure, properties, and bioactivity of the scaffolds. This study provides a first structured report of aging effects on the structure and chemico-physical properties of bioactive glass-based scaffolds, offering an insight about the importance of their storage and packaging.File | Dimensione | Formato | |
---|---|---|---|
materials-12-01485.pdf
accesso aperto
Descrizione: Published version
:
Publisher’s version
Dimensione
4.84 MB
Formato
Adobe PDF
|
4.84 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.