This work is focused on the realization of a new manufacturing process based on the introduction of TiO2 nanostructured coatings on the surface of red earthenware pottery for domestic use. The aim of the study is to improve the technical properties of the product made from lime and iron-rich clays used to produce traditional artistic Tuscan pottery (Italy). The identified strategy involves the application of nanoparticles onto the surface of ceramic substrates via a sol-gel based process; the initial porosity of the Earthenware promotes the insertion of inert nanoparticles in the outermost part of the ceramic material by simple immersion of bisqueware in the colloidal solutions of nanoparticles. Morphological investigation of the functionalized surfaces has been carried out by scanning electron microscope and atomic force microscopy, while the effectiveness of the treatment was checked by evaluating the water absorption capacity in compliance with the standard method AS-1012.21-1999. The obtained results show a reduction of surface porosity, which turns into a reduced water uptake respect to the traditional pottery, maintaining, at the same time, identical aesthetical characteristics.
Improved functional performances of traditional artistic pottery by sol-gel nanoparticles deposition
Tana F.;De Nardo L.;
2019-01-01
Abstract
This work is focused on the realization of a new manufacturing process based on the introduction of TiO2 nanostructured coatings on the surface of red earthenware pottery for domestic use. The aim of the study is to improve the technical properties of the product made from lime and iron-rich clays used to produce traditional artistic Tuscan pottery (Italy). The identified strategy involves the application of nanoparticles onto the surface of ceramic substrates via a sol-gel based process; the initial porosity of the Earthenware promotes the insertion of inert nanoparticles in the outermost part of the ceramic material by simple immersion of bisqueware in the colloidal solutions of nanoparticles. Morphological investigation of the functionalized surfaces has been carried out by scanning electron microscope and atomic force microscopy, while the effectiveness of the treatment was checked by evaluating the water absorption capacity in compliance with the standard method AS-1012.21-1999. The obtained results show a reduction of surface porosity, which turns into a reduced water uptake respect to the traditional pottery, maintaining, at the same time, identical aesthetical characteristics.File | Dimensione | Formato | |
---|---|---|---|
Battistini_2018_Mater._Res._Express_6_025032.pdf
accesso aperto
Descrizione: Published version
:
Publisher’s version
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.