A novel single-step time integration method is proposed for general dynamic problems. From linear spectral analysis, the new method with optimal parameters has second-order accuracy, unconditional stability, controllable algorithmic dissipation and zero-order overshoot in displacement and velocity. Comparison of the proposed method with several representative implicit methods shows that the new method has higher accuracy than the single-step generalized-a method, and also than the composite r¥-Bathe method when mild algorithmic dissipation is used. Besides, this method is spectrally identical to the linear two-step method, although being easier to use since it does not need additional start-up procedures. Its numerical properties are assessed through numerical examples, and the new method shows competitive performance for both linear and nonlinear problems.
A Novel Single-Step Unconditionally Stable Numerical Integration Scheme with Tunable Algorithmic Dissipation
Zhang, H.;Zhang, R.;Zanoni, A.;Masarati, P.
2020-01-01
Abstract
A novel single-step time integration method is proposed for general dynamic problems. From linear spectral analysis, the new method with optimal parameters has second-order accuracy, unconditional stability, controllable algorithmic dissipation and zero-order overshoot in displacement and velocity. Comparison of the proposed method with several representative implicit methods shows that the new method has higher accuracy than the single-step generalized-a method, and also than the composite r¥-Bathe method when mild algorithmic dissipation is used. Besides, this method is spectrally identical to the linear two-step method, although being easier to use since it does not need additional start-up procedures. Its numerical properties are assessed through numerical examples, and the new method shows competitive performance for both linear and nonlinear problems.File | Dimensione | Formato | |
---|---|---|---|
ZHANH01-20.pdf
Accesso riservato
Descrizione: Paper
:
Publisher’s version
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.