In recent decades additive manufacturing (AM) has evolved from a prototyping to a production technology. It is used to produce end-use-parts for medical, aerospace, automotive and other industrial applications from small series up to 100,000 of commercially successful products. Metal additive manufacturing processes are relatively slow, require complex preparation and post-processing treatment while using expensive machinery, resulting in high production costs per product. Design for Additive Manufacturing (DfAM) aims at optimizing the product design to deal with the complexity of the production processes, while also defining decisive benefits of the AM based product in the usage stages of its life cycle. Recent investigations have shown that the lack of knowledge on DfAM tools and techniques are seen as one of the barriers for the further implementation of AM. This paper presents a framework for DfAM methods and tools, subdivided into three distinct stages of product development: AM process selection, product redesign for functionality enhancement, and product optimization for the AM process chosen. It will illustrate the applicability of the design framework using examples from both research and industry.

Design for additive manufacturing: Framework and methodology

Moroni G.;
2020-01-01

Abstract

In recent decades additive manufacturing (AM) has evolved from a prototyping to a production technology. It is used to produce end-use-parts for medical, aerospace, automotive and other industrial applications from small series up to 100,000 of commercially successful products. Metal additive manufacturing processes are relatively slow, require complex preparation and post-processing treatment while using expensive machinery, resulting in high production costs per product. Design for Additive Manufacturing (DfAM) aims at optimizing the product design to deal with the complexity of the production processes, while also defining decisive benefits of the AM based product in the usage stages of its life cycle. Recent investigations have shown that the lack of knowledge on DfAM tools and techniques are seen as one of the barriers for the further implementation of AM. This paper presents a framework for DfAM methods and tools, subdivided into three distinct stages of product development: AM process selection, product redesign for functionality enhancement, and product optimization for the AM process chosen. It will illustrate the applicability of the design framework using examples from both research and industry.
2020
Additive manufacturing
Design
DfAM
File in questo prodotto:
File Dimensione Formato  
Design for additive manufacturing Framework and methodology.pdf

Accesso riservato

: Publisher’s version
Dimensione 7.34 MB
Formato Adobe PDF
7.34 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1145339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 147
  • ???jsp.display-item.citation.isi??? 91
social impact