In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.

Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases

Barzaghini B.;Nardini A.;Raimondi M. T.;Carelli S.
2020-01-01

Abstract

In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.
2020
3-D structures
additive manufacturing
cell therapy
disease modeling
neurodegenerative diseases
regenerative medicine
scaffold geometry
stem cells
File in questo prodotto:
File Dimensione Formato  
cells-09-01636-v2.pdf

accesso aperto

: Publisher’s version
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1145027
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 25
social impact