Recently, it has been suggested that the collective radiative decay of two point-like quantum emitters coupled to a waveguide, separated by a distance comparable to the coherence length of a spontaneously emitted photon, leads to an apparent “superradiance paradox” by which one cannot decide whether independent or collective emission occurs. Here we suggest an integrated optics platform to emulate the superradiance paradox, based on photon escape dynamics in waveguide lattices. Remarkably, Markovian decay dynamics and independent photon emission can be restored by frequent (Zeno-like) observation of the system.

Superradiance paradox in waveguide lattices

Longhi S.
2020-01-01

Abstract

Recently, it has been suggested that the collective radiative decay of two point-like quantum emitters coupled to a waveguide, separated by a distance comparable to the coherence length of a spontaneously emitted photon, leads to an apparent “superradiance paradox” by which one cannot decide whether independent or collective emission occurs. Here we suggest an integrated optics platform to emulate the superradiance paradox, based on photon escape dynamics in waveguide lattices. Remarkably, Markovian decay dynamics and independent photon emission can be restored by frequent (Zeno-like) observation of the system.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1143722
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact