We propose a CMOS architecture for spiking neural networks with permanent memory and online learning. It uses a three-transistors synapse with a floating node that stores the synaptic weight, programmed by using only Fowler-Nordheim tunneling current in the pA range for ultra-low power operation. A neuron with a conditioning circuit programs the floating gate synapse following the spike timing dependent plasticity rule. Simulations using a standard 150 nm CMOS process show the online learning capabilities of the architecture.

Tunneling-based CMOS Floating Gate Synapse for Low Power Spike Timing Dependent Plasticity

Mastella M.;Toso F.;Sciortino G.;Prati E.;Ferrari G.
2020-01-01

Abstract

We propose a CMOS architecture for spiking neural networks with permanent memory and online learning. It uses a three-transistors synapse with a floating node that stores the synaptic weight, programmed by using only Fowler-Nordheim tunneling current in the pA range for ultra-low power operation. A neuron with a conditioning circuit programs the floating gate synapse following the spike timing dependent plasticity rule. Simulations using a standard 150 nm CMOS process show the online learning capabilities of the architecture.
2020
Proceedings - 2020 IEEE International Conference on Artificial Intelligence Circuits and Systems, AICAS 2020
978-1-7281-4922-6
floating gate
spiking
STDP
synapse
VLSI
File in questo prodotto:
File Dimensione Formato  
AICAS_2020___Paper final.pdf

accesso aperto

Descrizione: Final manuscript
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 362.97 kB
Formato Adobe PDF
362.97 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1143256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact