In the framework of efficient partitioned numerical schemes for simulating multiphysics PDE problems, we propose using intergrid transfer operators based on radial basis functions to accurately exchange information among different PDEs defined in the same computational domain. Different (potentially non-nested) meshes can be used for the space discretization of the PDEs. The projection of the (primary) variables that are shared by the different PDEs (through the coupling terms) is carried out with Rescaled Localized Radial Basis Functions. We validate our approach by a numerical test for which we also show the scalability of the intergrid transfer operator in the framework of high performance computing. Then, we apply it to the electromechanical model for the human heart function, and simulate a heartbeat of an idealized left ventricle. We show that our approach enables the solution of large-scale multiphysics problems, especially when the individual models exhibit very different spatial scales.

An intergrid transfer operator using radial basis functions with application to cardiac electromechanics

Salvador M.;Dede' L.;Quarteroni A.
2020

Abstract

In the framework of efficient partitioned numerical schemes for simulating multiphysics PDE problems, we propose using intergrid transfer operators based on radial basis functions to accurately exchange information among different PDEs defined in the same computational domain. Different (potentially non-nested) meshes can be used for the space discretization of the PDEs. The projection of the (primary) variables that are shared by the different PDEs (through the coupling terms) is carried out with Rescaled Localized Radial Basis Functions. We validate our approach by a numerical test for which we also show the scalability of the intergrid transfer operator in the framework of high performance computing. Then, we apply it to the electromechanical model for the human heart function, and simulate a heartbeat of an idealized left ventricle. We show that our approach enables the solution of large-scale multiphysics problems, especially when the individual models exhibit very different spatial scales.
File in questo prodotto:
File Dimensione Formato  
Salvador2020_Article_AnIntergridTransferOperatorUsi.pdf

accesso aperto

: Publisher’s version
Dimensione 5.55 MB
Formato Adobe PDF
5.55 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1142899
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact