In this survey paper we discuss a series of recent results concerning nonnegative solutions to nonlinear diffusion equations of porous-medium type on Cartan–Hadamard manifolds, a special class of negatively-curved Riemannian manifolds that generalize the Euclidean space. We focus on sharp barrier estimates, asymptotic convergence and smoothing effects, describing quantitatively how the curvature behavior at infinity affects the way solutions depart from having a Euclidean-like structure.

Some recent advances in nonlinear diffusion on negatively-curved Riemannian manifolds: from barriers to smoothing effects

Muratori, Matteo
2020-01-01

Abstract

In this survey paper we discuss a series of recent results concerning nonnegative solutions to nonlinear diffusion equations of porous-medium type on Cartan–Hadamard manifolds, a special class of negatively-curved Riemannian manifolds that generalize the Euclidean space. We focus on sharp barrier estimates, asymptotic convergence and smoothing effects, describing quantitatively how the curvature behavior at infinity affects the way solutions depart from having a Euclidean-like structure.
2020
File in questo prodotto:
File Dimensione Formato  
M-UMI-20-05-10.pdf

Open Access dal 20/06/2021

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 421.94 kB
Formato Adobe PDF
421.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1142855
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact