Ternary systems consisting of polymers, lithium salts, and ionic liquids (ILs) are promising materials for the development of next-generation lithium batteries. The ternary systems combine the advantages of polymer-salt and IL-salt systems, thus providing media with high ionic conductivity and solid-like mechanical properties. In this work, we apply nuclear magnetic resonance 1H microimaging [magnetic resonance imaging (MRI)] techniques and molecular dynamics (MD) simulations to study the translational and rotational dynamics of the N-butyl-N-methylpyrrolidinium (PYR14) cation in poly(ethylene oxide) (PEO) matrices containing the lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) and the PYR14TFSI IL. The analysis of diffusion-weighted images in PEO/LiTFSI/PYR14TFSI samples with varying mole ratios (10:1:x, with x = 1, 2, 3, and 4) shows, in a wide range of temperatures, a spatially heterogeneous distribution of PYR14 diffusion coefficients. Their weight-averaged values increase with IL content but remain well below the values estimated for the neat IL. The analysis of T2 (spin-spin relaxation) parametric images shows that the PEO matrix significantly hinders PYR14 rotational freedom, which is only partially restored by increasing the IL content. The MD simulations, performed on IL-filled cavities within the PEO matrix, reveal that PYR14 diffusion is mainly affected by Li/TFSI coordination within the IL phase. In agreement with MRI experiments, increasing the IL content increases the PYR14 diffusion coefficients. Finally, the analysis of MD trajectories suggests that Li diffusion mostly develops within the IL phase, although a fraction of Li cations is strongly coordinated by PEO oxygen atoms.

Magnetic Resonance Imaging and Molecular Dynamics Characterization of Ionic Liquid in Poly(ethylene oxide)-Based Polymer Electrolytes

Casalegno M.;Castiglione F.;Raos G.;Mele A.;
2020-01-01

Abstract

Ternary systems consisting of polymers, lithium salts, and ionic liquids (ILs) are promising materials for the development of next-generation lithium batteries. The ternary systems combine the advantages of polymer-salt and IL-salt systems, thus providing media with high ionic conductivity and solid-like mechanical properties. In this work, we apply nuclear magnetic resonance 1H microimaging [magnetic resonance imaging (MRI)] techniques and molecular dynamics (MD) simulations to study the translational and rotational dynamics of the N-butyl-N-methylpyrrolidinium (PYR14) cation in poly(ethylene oxide) (PEO) matrices containing the lithium bis(trifluoromethanesulfonyl) imide salt (LiTFSI) and the PYR14TFSI IL. The analysis of diffusion-weighted images in PEO/LiTFSI/PYR14TFSI samples with varying mole ratios (10:1:x, with x = 1, 2, 3, and 4) shows, in a wide range of temperatures, a spatially heterogeneous distribution of PYR14 diffusion coefficients. Their weight-averaged values increase with IL content but remain well below the values estimated for the neat IL. The analysis of T2 (spin-spin relaxation) parametric images shows that the PEO matrix significantly hinders PYR14 rotational freedom, which is only partially restored by increasing the IL content. The MD simulations, performed on IL-filled cavities within the PEO matrix, reveal that PYR14 diffusion is mainly affected by Li/TFSI coordination within the IL phase. In agreement with MRI experiments, increasing the IL content increases the PYR14 diffusion coefficients. Finally, the analysis of MD trajectories suggests that Li diffusion mostly develops within the IL phase, although a fraction of Li cations is strongly coordinated by PEO oxygen atoms.
2020
magnetic resonance imaging
molecular dynamics simulations
Solid polymer electrolytes
File in questo prodotto:
File Dimensione Formato  
205_ACSApplMatInterace2020-12_23800_23811.pdf

accesso aperto

: Publisher’s version
Dimensione 7.94 MB
Formato Adobe PDF
7.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1142848
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact