We describe a computational method for accurate, quantitative tomographic reconstructions in Optical Projection Tomography, based on phase retrieval algorithms. Our method overcomes limitations imposed by light scattering in opaque tissue samples under the memory effect regime, as well as reduces artifacts due to mechanical movements, misalignments or vibrations. We make use of Gerchberg–Saxton algorithms, calculating first the autocorrelation of the object and then retrieving the associated phase under four numerically simulated measurement conditions. By approaching the task in such a way, we avoid the projection alignment procedure, exploiting the fact that the autocorrelation sinogram is always aligned and centered. We thus propose two new, projection-based, tomographic imaging flowcharts that allow registration-free imaging of opaque biological specimens and unlock three-dimensional tomographic imaging of hidden objects. Two main reconstruction approaches are discussed in the text, focusing on their efficiency in the tomographic retrieval and discussing their applicability under four different numerical experiments.

Optical projection tomography via phase retrieval algorithms

Ancora D.;
2018-01-01

Abstract

We describe a computational method for accurate, quantitative tomographic reconstructions in Optical Projection Tomography, based on phase retrieval algorithms. Our method overcomes limitations imposed by light scattering in opaque tissue samples under the memory effect regime, as well as reduces artifacts due to mechanical movements, misalignments or vibrations. We make use of Gerchberg–Saxton algorithms, calculating first the autocorrelation of the object and then retrieving the associated phase under four numerically simulated measurement conditions. By approaching the task in such a way, we avoid the projection alignment procedure, exploiting the fact that the autocorrelation sinogram is always aligned and centered. We thus propose two new, projection-based, tomographic imaging flowcharts that allow registration-free imaging of opaque biological specimens and unlock three-dimensional tomographic imaging of hidden objects. Two main reconstruction approaches are discussed in the text, focusing on their efficiency in the tomographic retrieval and discussing their applicability under four different numerical experiments.
2018
Autocorrelation imaging
Hidden object tomography
Optical projection tomography
Phase retrieval
Registration-free imaging
Algorithms
Artifacts
Image Enhancement
Image Interpretation, Computer-Assisted
Imaging, Three-Dimensional
Phantoms, Imaging
Tomography
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1046202317301779-main.pdf

Accesso riservato

Descrizione: Articolo principale
: Publisher’s version
Dimensione 1.99 MB
Formato Adobe PDF
1.99 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1142472
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 9
social impact