Given an exact functor between triangulated categories which admits both adjoints and whose cotwist is either zero or an autoequivalence, we show how to associate a unique full triangulated subcategory of the codomain on which the functor becomes either Frobenius or spherical, respectively. We illustrate our construction with examples coming from projective bundles and smooth blowups. This work generalises results about spherical subcategories obtained by Martin Kalck, David Ploog and the first author.

Frobenius and Spherical Codomains and Neighbourhoods

A. Hochenegger;
2020-01-01

Abstract

Given an exact functor between triangulated categories which admits both adjoints and whose cotwist is either zero or an autoequivalence, we show how to associate a unique full triangulated subcategory of the codomain on which the functor becomes either Frobenius or spherical, respectively. We illustrate our construction with examples coming from projective bundles and smooth blowups. This work generalises results about spherical subcategories obtained by Martin Kalck, David Ploog and the first author.
2020
File in questo prodotto:
File Dimensione Formato  
13-frb-sph.pdf

accesso aperto

: Publisher’s version
Dimensione 424.62 kB
Formato Adobe PDF
424.62 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1142460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact