In this paper, we broaden the master stability function approach to study the stability of the synchronization manifold in complex networks of stochastic dynamical systems. We provide necessary and sufficient conditions for exponential stability that allow us to discriminate the impact of noise. We observe that noise can be beneficial for synchronization when it diffuses evenly in the network. On the contrary, an excessively large amount of noise only acting on a subset of the node state variables might have disruptive effects on the network synchronizability. To demonstrate our findings, we complement our theoretical derivations with extensive simulations on paradigmatic examples of networks of noisy systems.
Stochastic master stability function for noisy complex networks
Della Rossa F.;
2020-01-01
Abstract
In this paper, we broaden the master stability function approach to study the stability of the synchronization manifold in complex networks of stochastic dynamical systems. We provide necessary and sufficient conditions for exponential stability that allow us to discriminate the impact of noise. We observe that noise can be beneficial for synchronization when it diffuses evenly in the network. On the contrary, an excessively large amount of noise only acting on a subset of the node state variables might have disruptive effects on the network synchronizability. To demonstrate our findings, we complement our theoretical derivations with extensive simulations on paradigmatic examples of networks of noisy systems.File | Dimensione | Formato | |
---|---|---|---|
2020 - Stochastic master stability function for noisy complex networks.pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.