The development of low-cost and simple technologies to improve pilot awareness of icing environments is crucial to improve the safety of rotorcraft, and especially those with limited icing clearance which are admittedly operating within icing environments without full icing clearance. An acoustic characterization of glaze and rime ice structures is hereby introduced to begin to quantify different ice shape noise signatures which directly transcend from the iced performance characteristics to develop acoustic ice detection technologies. The feasibility of the detection technique is assessed for fully unsteady simulations of ice accretion on an oscillating, two-dimensional airfoil. This work focuses on the computational modeling of the experimental database of a rotor airfoil with pitching motion during icing conditions from the NASA Glenn Icing Research Wind Tunnel and computing the resultant noise signals and analyzing their topology.

Acoustic Characterization of Glaze and Rime Ice Structures on an Oscillating Airfoil via Fully Unsteady Simulations

Morelli, Myles;Guardone, Alberto
2020-01-01

Abstract

The development of low-cost and simple technologies to improve pilot awareness of icing environments is crucial to improve the safety of rotorcraft, and especially those with limited icing clearance which are admittedly operating within icing environments without full icing clearance. An acoustic characterization of glaze and rime ice structures is hereby introduced to begin to quantify different ice shape noise signatures which directly transcend from the iced performance characteristics to develop acoustic ice detection technologies. The feasibility of the detection technique is assessed for fully unsteady simulations of ice accretion on an oscillating, two-dimensional airfoil. This work focuses on the computational modeling of the experimental database of a rotor airfoil with pitching motion during icing conditions from the NASA Glenn Icing Research Wind Tunnel and computing the resultant noise signals and analyzing their topology.
2020
File in questo prodotto:
File Dimensione Formato  
MOREM01-20.pdf

Accesso riservato

Descrizione: Paper
: Publisher’s version
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF   Visualizza/Apri
MOREM_OA_01-20.pdf

Open Access dal 20/06/2020

Descrizione: Paper Open Access
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1141735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 5
social impact