We study the dynamics of the action of an automaton group on the set of infinite words, and more precisely the discontinuous points of the map which associates to a point its set of stabilizers - the singular points. We show that, for any Mealy automaton, the set of singular points has measure zero. Then we focus our attention on several classes of automata. We characterize those contracting automata generating groups without singular points, and apply this characterization to the Basilica group. We prove that potential examples of reversible automata generating infinite groups without singular points are necessarily bireversible. We also provide some conditions for such examples to exist. Finally, we study some dynamical properties of the Schreier graphs in the boundary.

Boundary dynamics for bireversible and for contracting automaton groups

D'Angeli D.;Rodaro E.
2020

Abstract

We study the dynamics of the action of an automaton group on the set of infinite words, and more precisely the discontinuous points of the map which associates to a point its set of stabilizers - the singular points. We show that, for any Mealy automaton, the set of singular points has measure zero. Then we focus our attention on several classes of automata. We characterize those contracting automata generating groups without singular points, and apply this characterization to the Basilica group. We prove that potential examples of reversible automata generating infinite groups without singular points are necessarily bireversible. We also provide some conditions for such examples to exist. Finally, we study some dynamical properties of the Schreier graphs in the boundary.
File in questo prodotto:
File Dimensione Formato  
Boundary dynamics for bireversible and contractracting.pdf

Accesso riservato

: Publisher’s version
Dimensione 469.6 kB
Formato Adobe PDF
469.6 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1141704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact