The corrosion control of WC-Co type hardmetals is steadily gaining momentum for novel crucial applications in the Oil & Gas and food industries. The corrosion rate of the Co-based binder, and the extent to which coupling to WC speeds it up, are strongly influenced by alloying. In this paper, we investigate the impact of Cr on the corrosion-product film formation of Co- and Cosingle bondNi based hardmetal binders in acidic, neutral and alkaline aqueous solutions. We centred our study on the role of Cr in driving the distribution of oxidized Co and Ni at the micrometre scale, thanks to synchrotron-based soft-X ray microspectroscopy. We have investigated morphochemical distributions for the following grades: Co96Cr4, Co48Ni48Cr4, Co50Cr50. Chemical-state mapping has been complemented by electrochemical measurements and metallographic observations. Amounts of Cr and Ni of ca. 50% notably increase the corrosion resistance in all ambients, with a stronger beneficial effect of the former element. 4% addition of Cr results in slight positive effects, with the exception of the Cosingle bondNi system in alkaline ambient, that, together with Co50Cr50, outperforms the other grades. In all investigated alloy-ambient combinations, a continuous oxidized metal film grows, onto which micrometric island form of shape and dimensions that depend on the specific grade and aggressive conditions. Quantitative descriptors of chemical-state maps and their theoretical interpretation in terms of electrochemical phase-formation by oxy-hydroxide precipitation, allow to correlate the island patterns with the degree of pseudopassivation.
The role of chromium in the corrosion performance of cobalt- and cobalt-nickel based hardmetal binders: A study centred on X-ray absorption microspectroscopy
Bozzini, Benedetto;Boniardi, Marco;Casaroli, Andrea;
2020-01-01
Abstract
The corrosion control of WC-Co type hardmetals is steadily gaining momentum for novel crucial applications in the Oil & Gas and food industries. The corrosion rate of the Co-based binder, and the extent to which coupling to WC speeds it up, are strongly influenced by alloying. In this paper, we investigate the impact of Cr on the corrosion-product film formation of Co- and Cosingle bondNi based hardmetal binders in acidic, neutral and alkaline aqueous solutions. We centred our study on the role of Cr in driving the distribution of oxidized Co and Ni at the micrometre scale, thanks to synchrotron-based soft-X ray microspectroscopy. We have investigated morphochemical distributions for the following grades: Co96Cr4, Co48Ni48Cr4, Co50Cr50. Chemical-state mapping has been complemented by electrochemical measurements and metallographic observations. Amounts of Cr and Ni of ca. 50% notably increase the corrosion resistance in all ambients, with a stronger beneficial effect of the former element. 4% addition of Cr results in slight positive effects, with the exception of the Cosingle bondNi system in alkaline ambient, that, together with Co50Cr50, outperforms the other grades. In all investigated alloy-ambient combinations, a continuous oxidized metal film grows, onto which micrometric island form of shape and dimensions that depend on the specific grade and aggressive conditions. Quantitative descriptors of chemical-state maps and their theoretical interpretation in terms of electrochemical phase-formation by oxy-hydroxide precipitation, allow to correlate the island patterns with the degree of pseudopassivation.File | Dimensione | Formato | |
---|---|---|---|
2020 - Refractory Metals, vol. 92, p.105320 (14 pagine).pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.83 MB
Formato
Adobe PDF
|
3.83 MB | Adobe PDF | Visualizza/Apri |
Articolo, The role of chromium in the corrosion etc..pdf
Open Access dal 02/07/2021
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.97 MB
Formato
Adobe PDF
|
3.97 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.