The aim of this work is to show how a number of results about slice-regular functions follow flawlessly from the analogous properties of holomorphic functions. For this purpose, we provide a general strategy by which properties of holomorphic functions can be translated in the setting of slice-regular functions. As an example of application of our method, we study the relation between the zeroes of a slice-regular function and the values of the corresponding stem function, showing that a slice-regular function vanishes if and only if the corresponding stem function takes values in a given complex analytic subset of C4. This allows us to recover in this setting a number of properties of the zeroes of holomorphic functions. We also discuss how our strategy can be adapted in some other contexts, like the study of the distribution of zeroes, of meromorphic functions, of representation formulas.

Holomorphicity of Slice-Regular Functions

Mongodi S.
2020-01-01

Abstract

The aim of this work is to show how a number of results about slice-regular functions follow flawlessly from the analogous properties of holomorphic functions. For this purpose, we provide a general strategy by which properties of holomorphic functions can be translated in the setting of slice-regular functions. As an example of application of our method, we study the relation between the zeroes of a slice-regular function and the values of the corresponding stem function, showing that a slice-regular function vanishes if and only if the corresponding stem function takes values in a given complex analytic subset of C4. This allows us to recover in this setting a number of properties of the zeroes of holomorphic functions. We also discuss how our strategy can be adapted in some other contexts, like the study of the distribution of zeroes, of meromorphic functions, of representation formulas.
2020
Holomorphic functions
Slice-regular functions
Stem functions
Zero set of slice-regular functions
File in questo prodotto:
File Dimensione Formato  
2020 - holo slice reg - CAOT.pdf

Accesso riservato

: Publisher’s version
Dimensione 374.09 kB
Formato Adobe PDF
374.09 kB Adobe PDF   Visualizza/Apri
11311-1140742_Mongodi.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 226.4 kB
Formato Adobe PDF
226.4 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1140742
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact