Patients with peripheral artery disease who undergo endovascular treatment are often inflicted by in-stent restenosis. The relation between restenosis and abnormal hemodynamics may be analyzed using patient-specific computational fluid dynamics (CFD) simulations. In this work, first a three-dimensional (3D) reconstruction method, based on an in-house semi-automatic segmentation algorithm of a patient's computed tomography (CT) images with calcification and metallic artifacts, and thrombus removal is described. The reconstruction method was validated using 3D printed rigid phantoms of stented femoral arteries by comparing the reconstructed geometries with the reference computer-aided design (CAD) geometries employed for 3D printing. The mean reconstruction error resulting from the validation of the reconstruction method was ~6% in both stented and non-stented regions. Secondly, a patient-specific model of the stented femoral artery was created and CFD analyses were performed with emphasis on the selection of the boundary conditions. CFD results were compared in scenarios with and without common femoral artery bifurcation, employing flat or parabolic inlet velocity profiles. Similar helical flow structures were visible in all scenarios. Negligible differences in wall shear stress (<0.5%) were found in the stented region. In conclusion, a robust method, applicable to patient-specific cases of stented diseased femoral arteries, was developed and validated.

Computing patient-specific hemodynamics in stented femoral artery models obtained from computed tomography using a validated 3D reconstruction method

Colombo M.;Bologna M.;Rodriguez Matas J. F.;Migliavacca F.;Chiastra C.
2020-01-01

Abstract

Patients with peripheral artery disease who undergo endovascular treatment are often inflicted by in-stent restenosis. The relation between restenosis and abnormal hemodynamics may be analyzed using patient-specific computational fluid dynamics (CFD) simulations. In this work, first a three-dimensional (3D) reconstruction method, based on an in-house semi-automatic segmentation algorithm of a patient's computed tomography (CT) images with calcification and metallic artifacts, and thrombus removal is described. The reconstruction method was validated using 3D printed rigid phantoms of stented femoral arteries by comparing the reconstructed geometries with the reference computer-aided design (CAD) geometries employed for 3D printing. The mean reconstruction error resulting from the validation of the reconstruction method was ~6% in both stented and non-stented regions. Secondly, a patient-specific model of the stented femoral artery was created and CFD analyses were performed with emphasis on the selection of the boundary conditions. CFD results were compared in scenarios with and without common femoral artery bifurcation, employing flat or parabolic inlet velocity profiles. Similar helical flow structures were visible in all scenarios. Negligible differences in wall shear stress (<0.5%) were found in the stented region. In conclusion, a robust method, applicable to patient-specific cases of stented diseased femoral arteries, was developed and validated.
2020
3D printing; Computational fluid dynamics; Computed tomography; Helicity; Image processing; Image segmentation; Peripheral artery disease; Stent; Wall shear stress
File in questo prodotto:
File Dimensione Formato  
2020-Colombo-ME&P-1-s2.0-S1350453319302140-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.26 MB
Formato Adobe PDF
3.26 MB Adobe PDF   Visualizza/Apri
11311-1140557_Migliavacca.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.57 MB
Formato Adobe PDF
2.57 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1140557
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 24
social impact