Purpose: To evaluate a method for generating virtual four-dimensional computed tomography (4DCT) from four-dimensional magnetic resonance imaging (4DMRI) data in carbon ion radiotherapy with pencil beam scanning for abdominal tumors. Methods: Deformable image registration is used to: (a) register each respiratory phase of the 4DMRI to the end-exhale MRI; (b) register the reference end-exhale CT to the end-exhale MRI volume; (c) generate the virtual 4DCT by warping the registered CT according to the obtained deformation fields. A respiratory-gated carbon ion treatment plan is optimized on the planning 4DCT and the corresponding dose distribution is recalculated on the virtual 4DCT. The method was validated on a digital anthropomorphic phantom and tested on eight patients (18 acquisitions). For the phantom, a ground truth dataset was available to assess the method performances from the geometrical and dosimetric standpoints. For the patients, the virtual 4DCT was compared with the planning 4DCT. Results: In the phantom, the method exhibits a geometrical accuracy within the voxel size and Dose Volume Histograms deviations up to 3.3% for target V95% (mean dose difference ≤ 0.2% of the prescription dose, gamma pass rate > 98%). For patients, the virtual and the planning 4DCTs show good agreement at end-exhale (3% median D95% difference), whereas other respiratory phases exhibit moderate motion variability with consequent dose discrepancies, confirming the need for motion mitigation strategies during treatment. Conclusions: The virtual 4DCT approach is feasible to evaluate treatment plan robustness against intra- and interfraction motion in carbon ion therapy delivered at the abdominal site.

Virtual 4DCT from 4DMRI for the management of respiratory motion in carbon ion therapy of abdominal tumors

Meschini G.;Paganelli C.;Riboldi M.;Baroni G.
2020-01-01

Abstract

Purpose: To evaluate a method for generating virtual four-dimensional computed tomography (4DCT) from four-dimensional magnetic resonance imaging (4DMRI) data in carbon ion radiotherapy with pencil beam scanning for abdominal tumors. Methods: Deformable image registration is used to: (a) register each respiratory phase of the 4DMRI to the end-exhale MRI; (b) register the reference end-exhale CT to the end-exhale MRI volume; (c) generate the virtual 4DCT by warping the registered CT according to the obtained deformation fields. A respiratory-gated carbon ion treatment plan is optimized on the planning 4DCT and the corresponding dose distribution is recalculated on the virtual 4DCT. The method was validated on a digital anthropomorphic phantom and tested on eight patients (18 acquisitions). For the phantom, a ground truth dataset was available to assess the method performances from the geometrical and dosimetric standpoints. For the patients, the virtual 4DCT was compared with the planning 4DCT. Results: In the phantom, the method exhibits a geometrical accuracy within the voxel size and Dose Volume Histograms deviations up to 3.3% for target V95% (mean dose difference ≤ 0.2% of the prescription dose, gamma pass rate > 98%). For patients, the virtual and the planning 4DCTs show good agreement at end-exhale (3% median D95% difference), whereas other respiratory phases exhibit moderate motion variability with consequent dose discrepancies, confirming the need for motion mitigation strategies during treatment. Conclusions: The virtual 4DCT approach is feasible to evaluate treatment plan robustness against intra- and interfraction motion in carbon ion therapy delivered at the abdominal site.
2020
4DMRI
carbon ion therapy
motion management
virtual 4DCT
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1138006
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact