This scientific work aims at developing an innovative virtual platform to design lower limb prosthesis centered on the virtual model of the patient and based on a computer-aided and knowledge-guided approach. The main idea is to develop a digital human model of the amputee to be used by the prosthetist in a full virtual environment in which a platform provides a set of interactive tools to design, configure, and test the prosthesis. This virtual platform permits to design and configure the whole prosthesis, in particular, the 3D model of the assembled prosthesis, crucial to define the prosthesis setup and patient’s walking performance. An ad-hoc computer-aided design system has been developed in house to design the 3D model of the socket according to traditional operations made by technicians during traditional manufacturing process. Moreover, a finite element model has been defined to study the contact between residual limb and socket. The resulting 3D model of the socket can be realized by exploiting multimaterial additive manufacturing technology. Finally, the developed platform also permits to handle contact pressures and patient’s gait data in a unique application through the use of a low-cost motion capture (MOCAP) system. The whole platform has been tested with the help of an Italian orthopedic laboratory. The developed platform is a promising solution to develop the check socket, and the application may be used also for training purpose for junior orthopedic technicians.

A virtual platform for lower limb prosthesis design and assessment

Colombo G.
2019

Abstract

This scientific work aims at developing an innovative virtual platform to design lower limb prosthesis centered on the virtual model of the patient and based on a computer-aided and knowledge-guided approach. The main idea is to develop a digital human model of the amputee to be used by the prosthetist in a full virtual environment in which a platform provides a set of interactive tools to design, configure, and test the prosthesis. This virtual platform permits to design and configure the whole prosthesis, in particular, the 3D model of the assembled prosthesis, crucial to define the prosthesis setup and patient’s walking performance. An ad-hoc computer-aided design system has been developed in house to design the 3D model of the socket according to traditional operations made by technicians during traditional manufacturing process. Moreover, a finite element model has been defined to study the contact between residual limb and socket. The resulting 3D model of the socket can be realized by exploiting multimaterial additive manufacturing technology. Finally, the developed platform also permits to handle contact pressures and patient’s gait data in a unique application through the use of a low-cost motion capture (MOCAP) system. The whole platform has been tested with the help of an Italian orthopedic laboratory. The developed platform is a promising solution to develop the check socket, and the application may be used also for training purpose for junior orthopedic technicians.
DHM and Posturography
9780128167137
Low-cost MOCAP system; Lower limb prosthesis; Pressure analysis; Socket design and 3D modeling
File in questo prodotto:
File Dimensione Formato  
3-s2.0-B978012816713700057X-main.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.06 MB
Formato Adobe PDF
3.06 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1136652
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact