The definition of a comprehensive initial set of engineering requirements is crucial to an effective and successful design process. To support engineering designers in this non-trivial task, well-acknowledged requirement checklists are available in literature, but their actual support is arguable. Indeed, engineering design tasks involve multifunctional systems, characterized by a complex map of requirements affecting different functions. Aiming at improving the support provided by common checklists, this paper proposes a structured tool capable of allocating different requirements to specific functions, and to discern between design wishes and demands. A first experiment of the tool enabled the extraction of useful information for future developments targeting the enhancement of the tool’s efficacy. Indeed, although some advantages have been observed in terms of the number of proposed requirements, the presence of multiple functions led users (engineering students in this work) to useless repetitions of the same requirement. In addition, the use of the proposed tool resulted in increased perceived effort, which has been measured through the NASA Task Load Index method. These limitations constitute the starting point for planning future research and the mentioned enhancements, beyond representing a warning for scholars involved in systematizing the extraction and management of design requirements. Moreover, thanks to the robustness of the scientific approach used in this work, similar experiments can be repeated to obtain data with a more general validity, especially from industry.
Testing a New Structured Tool for Supporting Requirements’ Formulation and Decomposition
Becattini, Niccolò;
2020-01-01
Abstract
The definition of a comprehensive initial set of engineering requirements is crucial to an effective and successful design process. To support engineering designers in this non-trivial task, well-acknowledged requirement checklists are available in literature, but their actual support is arguable. Indeed, engineering design tasks involve multifunctional systems, characterized by a complex map of requirements affecting different functions. Aiming at improving the support provided by common checklists, this paper proposes a structured tool capable of allocating different requirements to specific functions, and to discern between design wishes and demands. A first experiment of the tool enabled the extraction of useful information for future developments targeting the enhancement of the tool’s efficacy. Indeed, although some advantages have been observed in terms of the number of proposed requirements, the presence of multiple functions led users (engineering students in this work) to useless repetitions of the same requirement. In addition, the use of the proposed tool resulted in increased perceived effort, which has been measured through the NASA Task Load Index method. These limitations constitute the starting point for planning future research and the mentioned enhancements, beyond representing a warning for scholars involved in systematizing the extraction and management of design requirements. Moreover, thanks to the robustness of the scientific approach used in this work, similar experiments can be repeated to obtain data with a more general validity, especially from industry.File | Dimensione | Formato | |
---|---|---|---|
applsci-10-03259.pdf
accesso aperto
Descrizione: Articolo principale
:
Publisher’s version
Dimensione
3.44 MB
Formato
Adobe PDF
|
3.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.