Different types of thermal boundary conditions are conceivable in numerical simulations of convective heat transfer problems. Isoflux, isothermal and a mixed-type boundary condition are compared by means of direct numerical simulations (for the lowest Reynolds number) and well-resolved large-eddy simulations of a turbulent forced convection pipe flow over a range of bulk Reynolds numbers from Reb=5300 to Reb=37700, at two Prandtl numbers, i.e. Pr=0.71 and Pr=0.025. It is found that, while for Pr=0.71 the Nusselt number is hardly affected by the type of thermal boundary condition, for Pr=0.025 the isothermal boundary condition yields ≈20% lower Nusselt numbers compared to isoflux and mixed-type over the whole range of Reynolds numbers. A decomposition of the Nusselt number is derived. In particular, we decompose it into four contributions: laminar, radial and streamwise turbulent heat flux as well as a contribution due to the turbulent velocity field. For Pr=0.71 the contribution due to the radial turbulent heat flux is dominant, whereas for Pr=0.025 the contribution due to the turbulent velocity field is dominant. Only at a moderately high Reynolds number, such as Reb=37700, both turbulent contributions are of similar magnitude. A comparison of first- and second-order thermal statistics between the different types of thermal boundary conditions shows that the statistics are not only influenced in the near-wall region but also in the core region of the flow. Power spectral densities illustrate large thermal structures in low-Prandtl-number fluids as well as thermal structures located right at the wall, only present for the isoflux boundary condition. A database including the first- and second-order statistics together with individual contributions to the budget equations of the temperature variance and turbulent heat fluxes is hosted in the open access repository KITopen (DOI:https://doi.org/10.5445/IR/1000096346).

The influence of thermal boundary conditions on turbulent forced convection pipe flow at two Prandtl numbers

Marocco L.;
2019

Abstract

Different types of thermal boundary conditions are conceivable in numerical simulations of convective heat transfer problems. Isoflux, isothermal and a mixed-type boundary condition are compared by means of direct numerical simulations (for the lowest Reynolds number) and well-resolved large-eddy simulations of a turbulent forced convection pipe flow over a range of bulk Reynolds numbers from Reb=5300 to Reb=37700, at two Prandtl numbers, i.e. Pr=0.71 and Pr=0.025. It is found that, while for Pr=0.71 the Nusselt number is hardly affected by the type of thermal boundary condition, for Pr=0.025 the isothermal boundary condition yields ≈20% lower Nusselt numbers compared to isoflux and mixed-type over the whole range of Reynolds numbers. A decomposition of the Nusselt number is derived. In particular, we decompose it into four contributions: laminar, radial and streamwise turbulent heat flux as well as a contribution due to the turbulent velocity field. For Pr=0.71 the contribution due to the radial turbulent heat flux is dominant, whereas for Pr=0.025 the contribution due to the turbulent velocity field is dominant. Only at a moderately high Reynolds number, such as Reb=37700, both turbulent contributions are of similar magnitude. A comparison of first- and second-order thermal statistics between the different types of thermal boundary conditions shows that the statistics are not only influenced in the near-wall region but also in the core region of the flow. Power spectral densities illustrate large thermal structures in low-Prandtl-number fluids as well as thermal structures located right at the wall, only present for the isoflux boundary condition. A database including the first- and second-order statistics together with individual contributions to the budget equations of the temperature variance and turbulent heat fluxes is hosted in the open access repository KITopen (DOI:https://doi.org/10.5445/IR/1000096346).
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER
Forced convection; Low Prandtl number; Pipe; Thermal boundary conditions; Turbulence
File in questo prodotto:
File Dimensione Formato  
01-IJHMT-2019.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11311/1136414
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact