In this study, we report an investigation of the photoelectrochemical activity of TiO2 films formed by DC plasma electrolytic oxidation (PEO) at a variable potential in a sulfuric acid electrolyte at 0 and 25◦C. The surface morphology was mainly determined by the oxide-forming potential. X-Ray Diffraction and Raman analyses showed that the relative amount of the anatase and rutile phases varied from 100% anatase at low potential (110–130 V) to 100% rutile at high potential (180–200 V), while mixed-phase oxide films formed at intermediate potential. Correspondingly, the band gap of the TiO2 films decreased from about 3.20 eV (pure anatase) to 2.94 eV (pure rutile) and was red-shifted about 0.1 eV by reducing the electrolyte temperature from 25◦C to 0◦C. Glow-Discharge Optical Emission Spectroscopy (GD-OES) and X-ray Photoelectron Spectroscopy (XPS) analyses evidenced S-containing species located preferentially close to the TiO2/Ti interface. The photoelectrochemical activity was assessed by measuring the incident photon-to-current efficiency (IPCE) under Ultraviolet C (UV-C) irradiation, which showed a non-gaussian normal trend as a function of the PEO cell potential, with maximum values exceeding 80%. Photoelectrocatalytic activity was assessed by decolorization of model solutions containing methylene blue. Photoanodes having higher IPCE values showed faster decolorization kinetics.

Exploiting direct current plasma electrolytic oxidation to boost photoelectrocatalysis

Franz S.;Arab H.;Lucotti A.;Castiglioni C.;Vicenzo A.;Morini F.;Bestetti M.
2020-01-01

Abstract

In this study, we report an investigation of the photoelectrochemical activity of TiO2 films formed by DC plasma electrolytic oxidation (PEO) at a variable potential in a sulfuric acid electrolyte at 0 and 25◦C. The surface morphology was mainly determined by the oxide-forming potential. X-Ray Diffraction and Raman analyses showed that the relative amount of the anatase and rutile phases varied from 100% anatase at low potential (110–130 V) to 100% rutile at high potential (180–200 V), while mixed-phase oxide films formed at intermediate potential. Correspondingly, the band gap of the TiO2 films decreased from about 3.20 eV (pure anatase) to 2.94 eV (pure rutile) and was red-shifted about 0.1 eV by reducing the electrolyte temperature from 25◦C to 0◦C. Glow-Discharge Optical Emission Spectroscopy (GD-OES) and X-ray Photoelectron Spectroscopy (XPS) analyses evidenced S-containing species located preferentially close to the TiO2/Ti interface. The photoelectrochemical activity was assessed by measuring the incident photon-to-current efficiency (IPCE) under Ultraviolet C (UV-C) irradiation, which showed a non-gaussian normal trend as a function of the PEO cell potential, with maximum values exceeding 80%. Photoelectrocatalytic activity was assessed by decolorization of model solutions containing methylene blue. Photoanodes having higher IPCE values showed faster decolorization kinetics.
2020
Anatase; Photoelectrocatalysis; Plasma electrolytic oxidation; Rutile; TiO; 2; Titanium dioxide
File in questo prodotto:
File Dimensione Formato  
catalysts-10-00325_final.pdf

accesso aperto

Descrizione: Articolo principale
: Publisher’s version
Dimensione 4.65 MB
Formato Adobe PDF
4.65 MB Adobe PDF Visualizza/Apri
catalysts-10-00325-s001_supplementary information.pdf

accesso aperto

Descrizione: Dati supplementari
: Publisher’s version
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1134982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact