We demonstrate a Fourier transform (FT) coherent anti-Stokes Raman scattering (CARS) spectroscopy system based on fiber technology with ultra-broad spectral coverage and high-sensitivity. A femtosecond ytterbium fiber oscillator is amplified and spectrally broadened in a photonic crystal fiber to synthesize pulses with energy of 14 nJ at 1040 nm, that are compressed to durations below 20 fs. The resulting pulse train is coupled to a FT-CARS interferometer enabling measurement of high-quality CARS spectra with Raman shifts of ∼3000 cm−1 and signal to noise ratio up to 240 and 690 with acetonitrile and polystyrene samples, respectively, for observation times of 160 µs; a detection limit of one part per thousand is demonstrated with a cyanide/water solution. The system has the potential to detect trace contaminants in water as well as other broadband high-sensitivity CARS spectroscopy applications.

Broadband fourier-transform coherent raman spectroscopy with an ytterbium fiber laser

Coluccelli N.;Vicentini E.;Gambetta A.;Laporta P.;Galzerano G.
2018-01-01

Abstract

We demonstrate a Fourier transform (FT) coherent anti-Stokes Raman scattering (CARS) spectroscopy system based on fiber technology with ultra-broad spectral coverage and high-sensitivity. A femtosecond ytterbium fiber oscillator is amplified and spectrally broadened in a photonic crystal fiber to synthesize pulses with energy of 14 nJ at 1040 nm, that are compressed to durations below 20 fs. The resulting pulse train is coupled to a FT-CARS interferometer enabling measurement of high-quality CARS spectra with Raman shifts of ∼3000 cm−1 and signal to noise ratio up to 240 and 690 with acetonitrile and polystyrene samples, respectively, for observation times of 160 µs; a detection limit of one part per thousand is demonstrated with a cyanide/water solution. The system has the potential to detect trace contaminants in water as well as other broadband high-sensitivity CARS spectroscopy applications.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1134499
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact