One of the principal limitations of employing a ground-penetrating radar (GPR) for landmine detection is the presence of clutter, i.e., reflections from the surrounding environment, which might interfere with the landmine echoes. Clutter presents similar scattering characteristics as typical targets and may significantly raise the detection threshold of the system. The capability to characterize the internal structure of a buried target might provide key unique information to develop advanced landmine-clutter discrimination algorithms, considering that the presence of internal scattering components can be univocally associated with man-made targets. In this letter, the possibility of identifying and characterizing these contributions from the GPR signature of a landmine is numerically assessed and experimentally validated. The simulated response from a landmine-like target shows that the presence of an internal structure generates additional reflection peaks, as a consequence of the layered structure of the object, and the field trials corroborate that it is possible to identify these scattering components and delineate their spatial distribution.
Characterization of the Internal Structure of Landmines Using Ground-Penetrating Radar
Lombardi F.;Lualdi M.;
2021-01-01
Abstract
One of the principal limitations of employing a ground-penetrating radar (GPR) for landmine detection is the presence of clutter, i.e., reflections from the surrounding environment, which might interfere with the landmine echoes. Clutter presents similar scattering characteristics as typical targets and may significantly raise the detection threshold of the system. The capability to characterize the internal structure of a buried target might provide key unique information to develop advanced landmine-clutter discrimination algorithms, considering that the presence of internal scattering components can be univocally associated with man-made targets. In this letter, the possibility of identifying and characterizing these contributions from the GPR signature of a landmine is numerically assessed and experimentally validated. The simulated response from a landmine-like target shows that the presence of an internal structure generates additional reflection peaks, as a consequence of the layered structure of the object, and the field trials corroborate that it is possible to identify these scattering components and delineate their spatial distribution.File | Dimensione | Formato | |
---|---|---|---|
2020_GRSL_revision.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
528.17 kB
Formato
Adobe PDF
|
528.17 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.