We study the quasi-classical limit of a quantum system composed of finitely many nonrelativistic particles coupled to a quantized field in Nelson-type models. We prove that, as the field becomes classical and the corresponding degrees of freedom are traced out, the effective Hamiltonian of the particles converges in resolvent sense to a self-adjoint Schrödinger operator with an additional potential, depending on the state of the field. Moreover, we explicitly derive the expression of such a potential for a large class of field states and show that, for certain special sequences of states, the effective potential is trapping. In addition, we prove convergence of the ground-state energy of the full system to a suitable effective variational problem involving the classical state of the field.
Effective Potentials Generated by Field Interaction in the Quasi-Classical Limit
Correggi M.;Falconi M.
2018-01-01
Abstract
We study the quasi-classical limit of a quantum system composed of finitely many nonrelativistic particles coupled to a quantized field in Nelson-type models. We prove that, as the field becomes classical and the corresponding degrees of freedom are traced out, the effective Hamiltonian of the particles converges in resolvent sense to a self-adjoint Schrödinger operator with an additional potential, depending on the state of the field. Moreover, we explicitly derive the expression of such a potential for a large class of field states and show that, for certain special sequences of states, the effective potential is trapping. In addition, we prove convergence of the ground-state energy of the full system to a suitable effective variational problem involving the classical state of the field.File | Dimensione | Formato | |
---|---|---|---|
Effective Potentials in the Quasi-Classical Limit (CF).pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.12 MB
Formato
Adobe PDF
|
1.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.