Group recommender systems suggest items to groups of users that want to utilize those items together. These systems can support several activities that can be performed together with other people and are typically social, like watching TV or going to the restaurant. In this paper we study ephemeral groups, i.e., groups constituted by users who are together for the first time, and for which therefore there is no history of past group activities. Recent works have studied ephemeral group recommendations proposing techniques that learn complex models of users and items. These techniques, however, are not appropriate to recommend items that are new in the system, while we propose a method able to deal with new items too. Specifically, our technique determines the preference of a group for a given item by combining the individual preferences of the group members on the basis of their contextual influence, the contextual influence representing the ability of an individual, in a given situation, to guide the group's decision. Moreover, while many works on recommendations do not consider the problem of efficiently producing recommendation lists at runtime, in this paper we speed up the recommendation process by applying techniques conceived for the top-K query processing problem. Finally, we present extensive experiments, evaluating: (i) the accuracy of the recommendations, using a real TV dataset containing a log of viewings performed by real groups, and (ii) the efficiency of the online recommendation task, exploiting also a bigger partially synthetic dataset.
Efficiently using contextual influence to recommend new items to ephemeral groups
Quintarelli E.;Rabosio E.;Tanca L.
2019-01-01
Abstract
Group recommender systems suggest items to groups of users that want to utilize those items together. These systems can support several activities that can be performed together with other people and are typically social, like watching TV or going to the restaurant. In this paper we study ephemeral groups, i.e., groups constituted by users who are together for the first time, and for which therefore there is no history of past group activities. Recent works have studied ephemeral group recommendations proposing techniques that learn complex models of users and items. These techniques, however, are not appropriate to recommend items that are new in the system, while we propose a method able to deal with new items too. Specifically, our technique determines the preference of a group for a given item by combining the individual preferences of the group members on the basis of their contextual influence, the contextual influence representing the ability of an individual, in a given situation, to guide the group's decision. Moreover, while many works on recommendations do not consider the problem of efficiently producing recommendation lists at runtime, in this paper we speed up the recommendation process by applying techniques conceived for the top-K query processing problem. Finally, we present extensive experiments, evaluating: (i) the accuracy of the recommendations, using a real TV dataset containing a log of viewings performed by real groups, and (ii) the efficiency of the online recommendation task, exploiting also a bigger partially synthetic dataset.File | Dimensione | Formato | |
---|---|---|---|
IS_2018_396_Revision 1_V0.pdf
Open Access dal 02/09/2021
Descrizione: Efficiently using contextual influence to recommend new items to ephemeral groups
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
1.75 MB
Formato
Adobe PDF
|
1.75 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.