Scaling-up optical quantum technologies requires a combination of highly efficient multi-photon sources and integrated waveguide components. Here, we interface these scalable platforms, demonstrating high-rate three-photon interference with a quantum dot based multi-photon source and a reconfigurable photonic chip on glass. We actively demultiplex the temporal train of single photons obtained from a quantum emitter to generate a 3.8 × 103 s−1 three-photon source, which is then sent to the input of a tunable tritter circuit, demonstrating the on-chip quantum interference of three indistinguishable single photons. We show via pseudo number-resolving photon detection characterizing the output distribution that this first combination of scalable sources and reconfigurable photonic circuits compares favorably in performance with respect to previous implementations. Our detailed loss-budget shows that merging solid-state multi-photon sources and reconfigurable photonic chips could allow 10-photon experiments on chip at ∼40 s−1 rate in a foreseeable future.

Interfacing scalable photonic platforms: Solid-state based multi-photon interference in a reconfigurable glass chip

Crespi A.;Osellame R.;
2019-01-01

Abstract

Scaling-up optical quantum technologies requires a combination of highly efficient multi-photon sources and integrated waveguide components. Here, we interface these scalable platforms, demonstrating high-rate three-photon interference with a quantum dot based multi-photon source and a reconfigurable photonic chip on glass. We actively demultiplex the temporal train of single photons obtained from a quantum emitter to generate a 3.8 × 103 s−1 three-photon source, which is then sent to the input of a tunable tritter circuit, demonstrating the on-chip quantum interference of three indistinguishable single photons. We show via pseudo number-resolving photon detection characterizing the output distribution that this first combination of scalable sources and reconfigurable photonic circuits compares favorably in performance with respect to previous implementations. Our detailed loss-budget shows that merging solid-state multi-photon sources and reconfigurable photonic chips could allow 10-photon experiments on chip at ∼40 s−1 rate in a foreseeable future.
2019
File in questo prodotto:
File Dimensione Formato  
1905.00936.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.92 MB
Formato Adobe PDF
2.92 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1131854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 22
social impact