Purpose: The primary aim of this prospective observational study was to assess whether diffusion MRI metrics correlate with isocitrate dehydrogenase (IDH) status in grade II and III gliomas. A secondary aim was to investigate whether multishell acquisitions with advanced models such as neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging offer greater diagnostic accuracy than diffusion-tensor imaging (DTI). Materials and Methods: Diffusion MRI (b = 700 and 2000 sec/mm2) was performed preoperatively in 192 consecutive participants (113 male and 79 female participants; mean age, 46.18 years; age range, 14–77 years) with grade II (n = 62), grade III (n = 58), or grade IV (n = 72) gliomas. DTI, diffusion kurtosis imaging, and NODDI metrics were measured in regions with or without hyperintensity on diffusion MR images and compared among groups defined according to IDH genotype, 1p/19q codeletion status, and tumor grade by using Mann-Whitney tests. Results: In grade II and III IDH wild-type gliomas, the maximum fractional anisotropy, kurtosis anisotropy, and restriction fraction were significantly higher and the minimum mean diffusivity was significantly lower than in IDH-mutant gliomas (P = .011, P = .002, P = .044, and P = .027, respectively); areas under the receiver operating characteristic curve ranged from 0.72 to 0.76. In IDH wild-type gliomas, no difference among grades II, III, and IV was found. In IDH-mutant gliomas, no difference between those with and those without 1p/19q loss was found. Conclusion: Diffusion MRI metrics showed correlation with isocitrate dehydrogenase status in grade II and III gliomas. Advanced diffusion MRI models did not add diagnostic accuracy, supporting the inclusion of a single-shell diffusion-tensor imaging acquisition in brain tumor imaging protocols.

Prediction of isocitrate dehydrogenase genotype in brain gliomas with MRI: Single-shell versus multishell diffusion models

Figini M.;Baselli G.;
2018-01-01

Abstract

Purpose: The primary aim of this prospective observational study was to assess whether diffusion MRI metrics correlate with isocitrate dehydrogenase (IDH) status in grade II and III gliomas. A secondary aim was to investigate whether multishell acquisitions with advanced models such as neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging offer greater diagnostic accuracy than diffusion-tensor imaging (DTI). Materials and Methods: Diffusion MRI (b = 700 and 2000 sec/mm2) was performed preoperatively in 192 consecutive participants (113 male and 79 female participants; mean age, 46.18 years; age range, 14–77 years) with grade II (n = 62), grade III (n = 58), or grade IV (n = 72) gliomas. DTI, diffusion kurtosis imaging, and NODDI metrics were measured in regions with or without hyperintensity on diffusion MR images and compared among groups defined according to IDH genotype, 1p/19q codeletion status, and tumor grade by using Mann-Whitney tests. Results: In grade II and III IDH wild-type gliomas, the maximum fractional anisotropy, kurtosis anisotropy, and restriction fraction were significantly higher and the minimum mean diffusivity was significantly lower than in IDH-mutant gliomas (P = .011, P = .002, P = .044, and P = .027, respectively); areas under the receiver operating characteristic curve ranged from 0.72 to 0.76. In IDH wild-type gliomas, no difference among grades II, III, and IV was found. In IDH-mutant gliomas, no difference between those with and those without 1p/19q loss was found. Conclusion: Diffusion MRI metrics showed correlation with isocitrate dehydrogenase status in grade II and III gliomas. Advanced diffusion MRI models did not add diagnostic accuracy, supporting the inclusion of a single-shell diffusion-tensor imaging acquisition in brain tumor imaging protocols.
2018
File in questo prodotto:
File Dimensione Formato  
Figini-Bizzi - Gliomas - Radiology 2018.pdf

accesso aperto

Descrizione: Articolo
: Publisher’s version
Dimensione 835.38 kB
Formato Adobe PDF
835.38 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1130104
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 25
social impact