In this paper we consider a class of non-uniformly elliptic integral functionals and we prove the local boundedness of the quasi-minimizers. Our approach is based on a suitable adaptation of the celebrated De Giorgi proof, and it relies on an appropriate Caccioppoli-type inequality.
Regularity of quasi-minimizers for non-uniformly elliptic integrals
Stefano Biagi;
2020-01-01
Abstract
In this paper we consider a class of non-uniformly elliptic integral functionals and we prove the local boundedness of the quasi-minimizers. Our approach is based on a suitable adaptation of the celebrated De Giorgi proof, and it relies on an appropriate Caccioppoli-type inequality.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0022247X19311060-main.pdf
Accesso riservato
:
Publisher’s version
Dimensione
413.22 kB
Formato
Adobe PDF
|
413.22 kB | Adobe PDF | Visualizza/Apri |
|
11311-1129597_Biagi.pdf
accesso aperto
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
338.48 kB
Formato
Adobe PDF
|
338.48 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


